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PART 1. METHOD OF PATH COEFFICIENTS
l INTRODUCTION

The ideal method of science is the study of the direct influence of one
condition on another in experiments in which all other possible causes
of variation are eliminated. Unfortunately, causes of variation often
seem to be beyond control. In the biological sciences, especially, one
often has to deal with a group of characteristics or conditions which are
correlated because of a complex of interacting, uncontrollable, and often
obscure causes. ‘The degree of correlation between two variables can be
calculated by well-known methods, but when it is found it gives merely
the resultant of all connecting paths of influence.

The present paper is an attempt to present a method of measuring the
direct influence along each separate path in such a system and thus of
finding the degree to which variation of a given effect is determined by
each particular cause. 7The method depends on the combination of
knowledge of the degrees of correlation among the variables in a system
with such knowledge as may be possessed of the causal relations. In cases
in which the causal relations are uncertain the method can be used to
find the logical consequences of any particular hypothesis in regard to

them.
CORRELATION

Relations between variables which can be measured quantitatively are

usually expressed in terms of Galton’s (4)! coeflicient of correlation,

XY’

NoxOy

the product of their standard deviations), or of Pearson’s (7) correlation
of M

ratio, 7z .y= -XEE (the ratio of the standard deviation of the mean values
X

of X for each value of Y to the total standard deviation of X), the

standard deviation being the square root of the mean square deviation.

Use of the coefficient of correlation (r) assumes that there is a linear

relation between the two variables—that is, that a given change in one

variable always involves a certain constant change in the corresponding

average value of the other. The value of the coeflicient can never exceed

Ty = (the ratio of the average product of deviations of X and Y to

1 Reference is made by number (italic) to * Literature cited,” p. 58s.
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+1 or —1. For many purposes it is enough to look on it as giving an
arbitrary scale between + 1 for perfect positive correlation, o for 10 corre-
lation, and — 1 for perfect negative correlation.

The correlation ratio () equals the coeflicient of correlation if the rela-
tion between the variables is exactly linear. It does not, however, depend
on the assumption of such a relation, and it is always larger than » when
the relations are not exactly linear. It can only take values between
oand + 1, and it can be looked upon as giving an arbitrary scale between
o for no correlation and 1 for perfect correlation.

The numerical value of the coellicient of correlation (r) takes on added
significance in connection with the idea of regression. It gives the aver-
age deviation of either variable from its mean value corresponding to a
given deviation of the other variable, provided that the standard devia-
tion is the unit of measurement in both cases. The regression in terms
of the actual units can, of course, be obtained by multiplying by the
ratio of the standard deviations. Thus, for the deviation of X correspond-

. . . Ox e r
ing to a unit deviation of Y, we have regx.y= rxyf- This formula may
Y

be deduced from the theory of least squares as the best linear expression
for X in terms of Y. The formula for what Galton later called the coefli-
cient of correlation was, in fact, first presented in this connection by
Bravais () in 1846. Any such interpretation is of course impossible
with the correlation ratio.

The numerical values of both coefficients, however, have significance in
another way. Their squares (y% or #? if regression is linecar) measure the
portion of the variability of one of the variables which is determined by
the other and which disappears in data in which the second is constant.
Thus if yo?y is the mean square deviation of X for constant Y, Pearson
has shown that:

v =0’x(1—7’x.y)
or yo’x =0% (1 —#%4y) if regression is linear.

It often happens that it is desirable to consider simultaneously the
relations in a system of more than two variables. For such cases, involv-
ing only linear relations between the various pairs of variables, Pearson (6)
has devised the coeflicient of multiple correlation.

A
Rx(Anc---N)=\/I—LE
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and Ag; is the minor made by deleting row X and column X.
R%3(anc- - -n) Mmeasures the degree of determination of X by the whole
A is the maximum possible
. Axx

squared correlation between X and a factor independent of those con-
sidered. This formula for multiple correlation leads to one for multiple
regression. Letting X', A’, B’, etc., be the deviations of variables X, ‘
A, B, etc., from their mean values, Pearson has shown that the most
probable value of X’ for known values of the other variables is given by
the formula

set of other factors, and 1 — R%pc...x)=

X' B A’ B B Be N’

.
ox Dxx 0y, Axx on Ayx oy

A

. — -
OX =N...pA0X=0Xx A :
XX

. . . .

Analogous but more complex formulae have recently been published
by Isserlis (5) for the multiple correlation ratio for use in cases in which
the regressions are not necessarily linear.

CAUSATION

In all the preceding results no account is taken of the nature of the
relationship between the variables. - The calculations thus neglect a very
important part of the knowledge which we often possess. There are
usually a priori or experimental grounds for believing that certain factors
are direct causes of variation in others or that other pairs are related as
effects of a common cause. In many cases, again, there is an obvious
mathematical relationship between variables, as between a sum and its
components or between a product and its factors. A correlation between
the length and volume of a body is an example of this kind. Just because
it involves no assumptions in regard to the nature of the relationship, a
coefficient of correlation may be looked upon as a fact pertaining to the
description of a particular population only to be questioned on the grounds
of inaccuracy in computation. But it would often be desirable to use a
method of analysis by which the knowledge that we have in regard to
causal relations may be combined with the knowledge of the degree of
relationship furnished by the coefficients of correlation.

The problem can best be presented by using a concrete example. In
a population of guinea pigs it will be found that the birth weights, early
gains, sizes of litters, and gestation periods are all more or less closely
correlated with each other. The influence of heredity, environmental
conditions, health of dam, etc., are also easily shown. In a rough way,
at least, it is easy to see why these variables are correlated with each other.
These relations can be represented conveniently in a diagram like that
in figure 1, in which the paths of influence are shown by arrows.
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The variety and complexity of the relations which may be back of a
correlation are well illustrated in this case. Thus, the weight at weaning
(33 days of age) should be correlated with the birth weight and with the
gain between birth and weaning simiply because it is their sun.  The
relations of birth weight with gestation period and the prenatal rate of
growth are also essentially mathematical rather than causal.  Birth
weight is necessarily fully determined by the character of the prenatal
growth curve and the time at which this is interrupted by birth.

In the relation between gestation period and size of litter we coe to
a case in which there is no necessary mathematical relationship.  We
naturally attempt to account for the high negative correlation by the
hypothesis that a large number in a litter in some way causes carly

Werght at Laternal
JJg’ay.s <= 0I3days ———_ conaifrorns,

I+ Heredity \ l+
Hegitar| o+ |rare of |+ Cond17ion
/'/Zf/? Grow7h |7\ of” 06//77

+ A
_ Size of +
l Lirter / T
s .

Gestation|-—t— farear?;

rerroq of pa.

Fi1G. 1.~Diagram illustrating the interrelations among the factors which determine the weight of guinea
pigs at birth and at weaning (33 days).

parturition. Similarly, a large number in a litter might be expected to
be a cause of slow growth in the foctuses.

Birth weight and gain after birth are highly correlated. Here neither
variable can be spoken of as the cause of variation in the other, and the
relation is not mathematical. They are evidently influenced by common
causes, among which heredity, size of litter, and conditions which affect
the health of the dam up to the time of birth at once come to mind.

Most of the variables are connected with each other through more than
one path. Thus, weight at birth is correlated with weight at weaning
both as a component of a sum and as the effect of comnion causes.

There may be a conflict of the paths. Thus, a large numnber in a litter
has a fairly direct tendency to shorten the gestation period, but this is
probably balanced in part by its tendency to reduce the rate of growth
of the foetuses, slow growth permitting a longer gestation period. Large
litters tend to reduce gestation period and rate of growth before and
after birth. But large litters are themselves inost apt to come when
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external conditions are favorable, which also favors long gestation periods
and vigorous growth.

The coefficient of correlation is a resultant of all paths connecting the
two variables. It would be valuable in many cases to be able to deter-
mine the relative importance of each particular path. The usual method
in such cases is to calculate the partial correlation between two variables
for a third constant, using Pearson’s well-known formula

rA]LjrrA g_"nc___g

Hap = T, )
V(1 =7740) (1—=7%)

for correlation between A and B for constant C. Such partial correla-
tions, however, must be interpreted with caution. It is true that by
making constant a connecting link between two variables, whether it is
a common cause or the cause of one and effect of the other, we eliminate
the path in question. This elimination of connecting paths in which the
constant factor is a link is not, however, the only way in which correlation
is affected. If an effect of a number of causes is made constant, spurious
negative correlations appear among the causes and their other effects.
Thus, if weight at 33 days is made constant, the corrclation between
birth weight and gain necessarily becomes —1. We are simply picking
out a population in which any deficiencies in birth weight happen to be
exactly balanced by excess in gain after birth. This is an extreme case,
but where the relations of cause and effect are at all complex it is evident
that the correlation between two variables may be changed in more than
one way by making a third variable constant, making the interpretation
doubtful.

Where there is a network of causes and effects, the interrelations could
be grasped best if a coefficient could be assigned to each path in the
diagram designed to measure the direct influence along it. The following
is an attempt to provide such a coefficient, which may be called a path

coefficient.
DEFINITIONS

We will start with the assumption that the direct influence along a
given path can be measured by the standard deviation remaining in the
effect after all other possible paths of influence are eliminated, while
variation of the causes back of the given path is kept as great as ever,
regardless of their relations to the other variables which have been made
constant. Let X be the dependent variable or effect and A the inde-
pendent variable or cause. The expression oy., will be used for the
standard deviation of X, which is found under the foregoing conditions,
and may be read as the standard deviation of X due to A. In a system
in which variation of X is completely determined by A, B, and C we
have oy.,=, c0x representing the constant factors, B and C, and
also the variation of A itself (¢,) by subscripts to the left. ‘The path
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coeflicient for the path from A to X will be defined as the ratio of the
standard deviation of X due to A to the total standard deviation of X.

_Txa,
XA= "
Ox

Just as the regression of X on A is expressed by 1,“ ¥ the deviation
of X directly caused by a unit deviation of A is given by the formula

Ox_0x-a
Pxea 6’\:' O,A' :

Another coeflicient which it will be convenient to use, the coefficient
of determination of X by A, dy.,, measures the fraction of complete
determination for which factor A is directly responsible in the given
system of factors. This definition implies that the sum of such coeflicients
must equal unity if all causes are accounted for.

SYSTEMS OF INDEPENDENT CAUSES

The degree of determination of one variable by another is most easily
found where the variables are connected by a mathematical relationship.
The simplest mathematical relationship is that between a sum and its
components. For the standard deviation of a sum the following relation

is well known:
Z(A'+ B’)2

2 "
O gty =777 " %+ 0%y 4 20,047,

If A and B are i'ndependent of each other, 7,,=0, and we have

02 p4p =07 + 0%,
The degree to which variation of the sum is determined by that of each
component is obvious.

2 2
o g
dx.A=TA and dx.B=TB; where X=A+B,
0 x ox :

giving dy., +dyx.3 =1, as required by definition.
For the standard deviation of X due to A we have in this case, ox., =0,.

Thus, {7X.A=o;""=z—" by definition.
X X .
E(A’-I—B’)A'= ZA” o,

NT X0, NOxT, Ox

Again, ry, =

Summing up, px.,= Vdxa =15 )

It can easily be shown that the same formulae hold in case we are
dealing with the sum of multiples of a number of independent factors
instead of with their own sum.

‘We can pass at once from this case to cases in whlch variation of X is
caused in the physical or physiological sense by variation in several causes
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provided that these causes are independent of each other, have linear
relations to the dependent variable X, and that the deviations which they
determine are additive. They are independent of each other if there is
no correlation between their variations. A cause has a linear relation to
the effect and is combined additively with the other factors if a given
amount of change in it always determines the same change in the effect,
regardless of its own absolute value or that of the other causes. T'he con-
clusion is that, under these conditions, the path coeflicient equals the
cocflicient of correlation between cause and effect, and the degree of
determination equals the square of either of the preceding coeflicients.

CHAINS OF CAUSES

If we know the extent to which a variable X is determined by a cer-
tain cause M, which is independent of other causes, combines with them
additively, and acts on X in a linear manner, and if we know the extent
to which M is determined by a more remote cause A, the degree of deter-
mination of X by A must be the product of the component degrees of
determination.

let X=M+N,and AM[=A+B
a?,

2
[N

Ay = =37 dya=—75", and dy., =5

x Oy 4

“

Thus dy., =dyx.udya ‘

and px.,=pxuPu-a:
NONADDITIVE FACTORS

In cases in which a factor does not act additively with the other factors
in determining the variations in the dependent variable, its influence on
the latter can not be completely expressed apart from the other factors,
at least in terms of the ordinary measures of variability. This can be
made clearer by an illustration. Multiplying factors are among the most
important of those which do not combine by addition.

Let X =AB and assume that r,;=0
TA"B"?

%y = M?*6%, + M?*, 0%, + 7

where A’ and B’ are deviations of A and B from their mean values M,
and My Putting B constant, we have o%.,=M?,?%; and similarly
putting A constant, we have o%;.;=M?,0%,. There remains a portion of o%y
which is due to A and B jointly and which can not be separated into parts
. M?,0? .
due to each alone. If we write dy.,= 62“0 4 as the degree of determi-
. . . 1\121@'23
nation of X by variation of A alone, and dx.B=—;2— as the corre-
X
sponding degree of determination of X by variation of B alone, we must
ZA”B”,

recognize an additional term dy.;5= s S in order that the sum of the
X
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coeflicients of determination may equal unity. Regression is linear and
M?,0%,

Pa =Mxr™ e Thus dy.,=7*%, as in the case of independent
X .
12072
additive factors. The term Tt is small unless the amounts of
X

variation in A and B are large in comparison with the mean values. In
many cases it is safe to deal with path coeflicients and degrees of deter-
mination in the case of multiplying factors just as in the case of addi-
tive factors.

As a concrete illustration of these points take two independent vari-
ables, for each of which the values 1, 2, and 3 occur in the frequencies
1, 2, and 1, respectively. Below is the correlation table between one of
these factors and their product.

Product (X).

A
'S I S 1| 2 ... .. 4
sl 2. 2 {....] 4 2 8
Sl 3....- b 3 PV PV 2 1| 4
=

My=2 o,=+1/2 rx=+/817 dxa=8[17
— EAIZ.B,2 dx.n =8/I7
Mx=4 ox=+/17/4 —W—I/W T
dxxp=—"
I
In this case the amounts of variation in the factors are relatively large
compared with their mean values, making the distribution surface mark-
edly heteroscedastic, yet the degree of determination by either factor
comes out only slightly less than one-half.

NONLINEAR RELATIONS

g (AMX)

Pearson’s definition of the correlation ratio, nx.a E— has already
X

been given. The variations of the mean value of X for different values
of A are the variations which can be attributed to the direct influence of
A, assuming that A is cause, X effect, and that other causes are com-
bined with A additively. Thus ox.a=0(ax) and we have at once
Px-A=77x.A.

Again, as the total variation of X is composed of the variation of its
mean values for different values of A, plus the variation about these
mean values, we have o%y=02(Mx) + a0’%, giving s0’x=0% (1—7%x.a), as
already noted.

Thus 7°x.» measures the portion of ¢%x lost by making A constaut, so
that as before dyx.a=7x.a= p?x.a.
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Unfortunately we can not deal with chains of factors which involve
nonlinear relations by mere multiplication of the path coefficients of the
component links. In the present paper, unless otherwise stated, it will
be assumed that all correlations. are
essentially linear.

EFFECTS OF COMMON CAUSES

Suppose that two variables, X and Y,
are affected by a number of causes in
common, (B, C, D). Let A represent
causes affecting X alone and E causes
affecting Y alone (fig. 2).

Let Px.A-—_-a PY'A’:O Y
PX-B"—" PY'B=b’

px.c=¢ py.c=c’
PX-D=d py.D=d,
Px.E=O Py.E=e’
B, C, and D are assumed to be in- [

. F1G. 2.—Diagram showing relations be-
dependent of each other—that is, 75c=0, "y cen two variables, X and Y, whose

etc. values are determined in part by com-
mon causes, B, C, and D, which are in-
dependent of each other.

Hence px.s=rxs, etc.
r o — rxy——bb'
EXYT V(1—b) (1—b")
_BYXY—BFXC BTYC rxy—Dbb'—cc’

oa"xy = v (E—8"x0) (1—5rc) - V(a—b—) (1—b"7—").

When all common causes have been made constant, pcgrxy=0
) i’xy=bb'+ CC’+ dd'=zilx.npy.3.
Thus, in those cases in which the causes are independent of each other,
the correlationi between two variables equals the sum of the products of
the pairs of path coefficients which con-
. *_é____ nect the two variables with each common
/r cause. An illustration of the use of this
principle was given in an earlier paper
b’ (8) in analyzing the nature of size factors
, in rabbits.
)/ _‘__Q______ 0 It may be deduced from the foregoing
Fi1c. 3.—Diagram showing ' relations be- formula that two variables may even be
tween two variables, X and ¥, whose completely determined by the same factors
values are completely determined by
common causes, B and C, which are in- and yet be uncorrelated with each other.
dependent of each other. Let variation of X be completely deter-
mined by factors B and C, the path coefficients being b and c, respectively.
Let Y be completely determined by the same factors, the path coeffi-
cients being b’ and ¢’ (fig. 3). Then rxy=>bb’+cc’. The condition
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under which ryy may equal zero is evidently that bb'=—cc’. An
example may be found in the absence of correlation between the sum
and difference of pairs of numbers picked at random {from a table.

In many cases a small actual correlation between variables will be
found on analysis to be the resultant of a balancing of very much more
important but opposed paths of influence leading {from common causes.

SYSTEMS OF CORRELATED CAUSES

The discussion up to this point has dealt wholly with causes which
act independently of each other. It is necessary to consider the eflects
of correlation among the causes.

Let us consider the sum of two correlated variables (fig. 4).

Let X=M+N

— g2 "
0%y = 0%y + 02+ 2040 yx-

We have defined oy., as the standard deviation of X when factors
other than M are constant, but M varies as much as before. T'he latter
qualification is important in the present case, since the making of N
constant tends to reduce the variation of M, reducing oy to oy/1 — 7.

The definition of gy., implies that

/A not only is N made constant hut

M that there is such a readjustiment

/ \ among the more remote causes, 4,
A 5 B, and C, that oy is unchanged.
\/V/ Under the definition it is evident
\ that in this case ax =0y and og.y

oN
FIG. 4.—A system in which the value of variable 9 N- Thus px M 8.11(1 /)X NT
X is completely determined by causes M and N,
which are correlated with each other. In attempting to ﬁlld the dEg rees

of determination of X by M and N
we meet a difliculty somewhat similar to that met in the case of non-
additive factors. The squared standard deviation is made up in part
of elements due wholly to M and N, respectively, but in part to a portion
which can not be divided between them. The term 20,0y is due
solely to the fact that the variations of X, which M and N determine,
tend to be in the same direction and so have greater effect than if varia-
tions M and N were combined at random. It seems best to define dy.,

2
as the degree of determination of X due to M alone. Thus dx.,,=7;
O'x

2
[
dy.n= ;Z—N - The remaining term may be considered as determination by

M and N jointly and may be written dxsim= 2px-ylxxsx-

These rules can be extended at once to the sums of more than two
variables, to sums of multiples of variables, and hence, as before, to
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linear relations of cause and effect in which the influence of the causes is
combined additively. It is also easy to show that the formulae apply
approximately for multiplying factors.

Summing up, pra= Vdg=

Syt 2EPX'MI)X'N7MN= I.

The next problem is to find the / /

degree of determination of X by a

factor such as B, which is connect- / M \5

ed with X by more than one path X

(fig. 5). : /
Assume that A, B, C, and D are

independent and completely deter- . \(‘

mine X. dy., +dg.y+dyc+dgp,=1.

But also dx.y+dx-n+ 2Py sPx-nan +

dx p=1 p
dX.B = dX'M - dX‘A + dX'N — dx«_: + FiG. 5.;A system in which the value of X is af-
2[)x M/)x N[)M BI)N‘B: remelnbermg that fected by a factor, B, along two different paths,

BMX and BNX.
Tyx= Pre-nPr-n-

Since dy., +dy.p=1, etc., we have dy.y=dx.ylyr+xopdyen=dyep+
Ayoylyony and dy.y=dy.c+dxdy.p-

Therefore dx.n=dy.ydy.;, +dyx-xdy-5 + 2 Px P x-xPrenPren ’
= PZX'M{)2M‘B +P2X‘NPZN‘B + 2[)X'MIJX‘N1)M'BPN B
= ({’x P s+ Px-nPy 5)2
PXB PXM[)MB+/)XNPND

These results are easily extended to cases in which B acts on X through
any number of causes. If a path coeflicient is assigned to each com-
ponent path, the combined path coefficient for all paths connecting an
effect with a remote cause equals the sum of the products of the path
coeflicients along all the paths. Since B is independent of A, C, and
D, rx5=Px-s= Px-uPrun+ Px-nPrv-

GENERAL FORMULA

We are now in a position to express the correlation between any two
variables in terms of path coeflicients. ILet X and Y be two variables
which are affected by correlated causes M and N. Represent the various
path coellicients by small letters as in the diagram. Let A, B, and C be
hypothetical remote causes which are independent of each other (fig. 6).

xY= Px-aPy-a ‘f‘/’x-B/’Y-n +P'C/)Y'C
=mam’a+ (mb4+nb")(m’b+n'b") +ncn'c
=mm’ +mbb’n’ -+nun’ +nb’bm’.
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Thus, the correiation between two variables is equal to the sum of the
products of the chains of path coefficients along all of the paths by
which they are connected.

If we know only the effects, X and Y, and correlated causes, such as
M and N, it will be well to substitute ryy for bb’ in the foregoing formula.

xy = Px-mPyem+ P;('MrMN{)Y'N + pxonpPy-nt PxentaunPron-

We have reached a general formula expressing correlation in terms of
path coelficients. This is not the order in which knowledge of the coelli-
cients must be obtained, but, nevertheless, by means of simultaneous
equations the values of the path coefficients in a systempn can often be
calculated from the known correlations. Additional equations are fur-
nished by the principle that the sum of the degrees of determination must

T
/,,, A///,E \<p>
™. e <o

F16. 6. Diagram showing relations between two Fi1G6. 7.—Simplified diagram of factors which
variables, X and Y, whose values are de- determine birth weight in guinea pigs.
termined in part by common causes, M and
N, which are correlated with each other.

equal unity. The fundamental equations can be written in general form
as follows:
A=DP'zr

dys =2pPy.aPx-s"an

Zdy+2dg.m=1
Txy =ZPxrPyea-

APPLICATION TO RIRTH WEIGHT OF GUINEA PIGS

As a simple example, we may consider the factors which determine
birth weight in guinea pigs (fig. 7).

Let X be birth weight; Q, prenatal growth curve; P, gestation period;
L, size of litter; A, hereditary and environmental factors which deter-
mine O, apart from size of litter; C, factors determining gestation period
apart from size of litter.

For the sake of simplicity, it will be assumed that the interval between
litters (if less than 75 days) accurately measures the gestation period
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and that the variables are connected only by the paths shown above,
In a certain stock of guinea pigs the following correlations were [ound:

Birth weight with interval, rxp= 4 0.5547.

Birth weight with litter,

Interval with litter,

#x, = —0.6578.
Tp, = —0.4444.

We are able to form three equations of type r¢y=Zp. py.. and three

of type Zpic 4+ 2ZpgaPxntan=1.
to calculate six unknown quantities.

These six equations will cuable us
The six path coellicients in the

diagram in figure 7 can thus be calculated from the information given

here, but no others.

o\
The equations are as follows:

(1) rxe=+0.5547=p+qll’.

(2) ra= —0.6578=ql+ pl’.

(3) Yo, =—O.4444=1".

ch @+ pP2qpll’ =1.

(5) a4-r=1.

(©) I ct=1.

From (3), pro=1"=—0. 4444 dpy, =17

From (6), pPrc=c = 0.8958 dp. =c?

From (1) and (2), pa=p = ©.3269 dew =2
gl=—o. 5125 dyq =¢°

From (4), Pxa=q¢ = 0.80627

Por=1 =—0. 5941 dg. =1*
Paa=a = o.8044 dgr=a
dy.qi =q
dypy = P
dx.rgn=2pgll’

dyy = (qgl+ pl'y?

dy=q%a*

dy.c=pc?

=0.1975
= . 8025

1. 0000

=0. 1009
= 7442
= . 1489

1. 0000

=0. 3530
= . 0470

—

. 0000

=0. 20627
= . 0211

= .1489

=. 4327

=.4815
=.0858

1. 0000
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Assuming that the diagrams in figures 7, 8, and g accurately represent
the causal relations, it appears that birth weight is determined to a very
much greater extent by variations in the rate of growth of the foetuses

than by variations in the length of

//4 the gestation period (dx.q=0.74,

dyp=o0.11). Size of litter has much

‘ﬁ\ more effect on birth weight by re-

ducing the rate of growth of the

foetuses than by causing early partu-

w rition (dy q.,=0.26, dx p1=0.02). The

< difference in birth weight caused

Fio b couleens maswring e e by a difference of a day in gestation
(Q), gestation period (P), size of litter (L), period can be calculated from the path
and other causes (4, €). coeflicient and the standard deviations

by the formula for path regression, p." regx.r= pxlX. The result, 3.34
ap

gm. per day, should measure the average rate of growth just preceding
parturition. The actual regression, 5.66 gm. per day of delay in parturi-
tion, is larger because a long gestation period means not merely a longer
time for growth but also, in general, a smaller litter and hence more
rapid growth.

On introducing other data the analysis can be carried much farther.
There are other paths of influence which should be recognized, positive
paths connecting A, C, and L, representing the favorable effects of good
health in the dam on rate of growth, gestation period, and size of litter,
and a negative path from Q to P

to represent the -tendency of rapid ‘%j ,4

growth to induce early parturition.

The relations between the observed A/‘? %
interval between litters and the ac- \

tual gestation period should also be /
considered.  The results presented \<
here are thus intended merely to fur- (7
nish a simple illustration of the Fic.o.—Coeflicients of determination. Symbols
method. A more complete analysis as in figure 7.

of the relations among the factors which affect birth weight and later
growth will be presented in a later paper.

DETERMINATION IN TERMS OF CORRELATION

Having obtained a formula for correlation in terms of determination,
the question arises whether the converse is possible. For a special class
of cases such a formula is easily obtained.
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For a single cause and effect the required formula is merely dy., =%,

(fig. 10).
o
pra

o

F1G. 10.—Effcct and one known cause,

The degree of determination by residual factors; that is, dx.,, is thus
1— 17,

If two causes are known, and the degree of correlation between them,

we have (fig. 11)—
~
A —F

o

F16. 11.—Effect and two correlated known causes.

2 2
s xa T x0=1
. RY 2
(rxa—7"xp%an)

""xo0
=1 p—
(1—7) (1— P an) 1—#

2 2 2 AP
2 _d I P — st 21 xnlas
¥xo X0~ .

2
I—=7%p
.

~

S

o

F16. 12.—Effect and three correlated known causes,

If three causes and their correlations are known (fig. 12), we have
es?’xa + cn??x0 =1, from which

_,2 S, . Sy 4 .
o= I 2 2850 anex — 25 s anT el ox + 27 xane
x0=0x.0= I i .

— 2 a2 2 y 2
I—7 45— ac— et 27actcn?na
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In this expression Z¢%;, means the suin of squares of the six known
correlations. Zrg,#, 7,y Mieans the sum of the products of the groups of
three correlations, corresponding to the sides of triangles. There are four
of these triangles, XAC, XAB, XCB, ABC. Zrg rautpctex Means the
sum of the three products of the groups of correlations which are
arranged in closed quadrilaterals, and Z¢%,1?%,, means the sum of the
product of squared correlations in pairs whiclt involve no common vari-
able (Px,%uc, s any Pxuac) (ig. 13).

The formula for four known causes is easily found by a continuation
of the methods used to find the others if attention is paid to the sym-

metry ot the expressions. Since, how-

A (’ ever, this formula, as well as that just

given for the case of three causes, is sote-

what cumbersome, it will be convenient

L/V _ to use a more condensed notation.
\ ¢(XABC . . .) may be used for a func-
5*"& tion involving all possible correlations

among the variables (XABC . . .). In

' the definitions Z#? means the sum of the

Fi6. 13.~Effect and four correlated known squares of all correlations; 2r%?

causcs.

, the sum

of the product of all pairs of squared
correlations which involve no variables in common; Z»rr, Zrrr, and
Zrrrrr are the sums of the products of all groups of correlations which,
represented by paths, form closed figures, triangles, quadrilaterals, and
pentagons, respectively. Z¢%rr is the sum of the products made by
multiplying each triangle of correlations in the sense above by the scc-
ond power of those correlations which do not involve any of the vari-
ables in the triangle. The number of terms of each kind is given above
the brace, where it is more than one.

¢(AB) =1—7? (2 terms).
3
¢(ABC) =1— Z¢r*+2Zrrr (5 terms).

0 4 3 3
¢(ABCD) =1— Zv+2Z¢rr—2Zrrrr+ Z¢%* (17 terms).

10 10 I5 12 15 10
S(ABCDL)=1— Z¢*+ 2Zrrr — 2Zrrir + 2Zvrrry + 232 — 22¢%rvr (73 teris).
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The formulae for degree of determination by residual factors may be
written as follows:

\

o=0¢(XA) in system XA.,

dyg.o= ¢<;§(AB)) in system XAB.
: x.o—?(](b%i—/};lzzs—) in system XABC.
dx.o=% in system XABCD

The degree of determination by the known causes is now easily cal-
culated. When all causes of variation in X are constant except A,
variation of X is measured by ,...czox and variation of A is meas-
ured by o...c3o,, writing the constant factors as subscripts to the left.
Assuming that the relation between A and X is linear, the deviation of
X determined by a unit deviation of A should be constant, whatever the
amount of variation in A. Thus:

b Ix_Tx:a__0:CBIx
X AT =
N 0o 0:eocBOa

In the case of the residual factor O, assumed to be independent of the
known factors A, B, C, etc., ...cur00=0,
and we have o4.o=...c4r0x

d _¢(X4BC )_0_"’1._9=...C“azx.
x0T "4 (ABC..)) o2y o2y
Thus:
¢ (XABC.. D,
«ecBA? x "WC)"T Xe

This should be the general formula for the squared standard deviation
with a number of constant factors.
Hence:
o’xa _O(XBC..0) , [$(ABC..0) ,
o $(BC..0) °x/ G(BC..0) A

o2 _9(EXBC..0) ,
x4 = $(ABC..0) " >

__ [#(XBC..0)
Pxx =V G(ABC...0)

$(XBC..0) _¢(XBC...)dy.o#(BC...)

bxn= §(ABC...0) S(ABC.)

17777°—21—5
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The general formula for partial correlation can easily be expressed in
the present terminology.

2 _ 2 (o 2
pepa?’x = pes0’x (I — pen?xa)

lxc_uA_o'z)_:_ $(XABCD)$(BCD)

,)0;0'—2; ' ({b-(AB(«[))(ﬁ(XBC[))

ven?’xa = ARBCINANRCIN

In some cases it may be of interest to find the degree of determination
when a number of factors not in the direct path between cause and effect
are assumed constant.

_ UTSUZX'A (o <UTSeeecn?” ‘()(UTSO' A)

dy.p=
urs@x.-a UTSGZX (0 WUTSeocp0 A) (UTSU x)

$(XBC..STU...0)$(ASTU)
T T G(ABC..STU)$(XSTU)
RELATION TO MULTIPLIE CORRELATION

The expressions defined as ¢(XABC...), etc., suggest the expansion of
determinants. It is in fact easy to show that ¢(XABC...N)=A

Where A=| 1 ea  Txg -+ Pxw
"ax 1 Tag - - Tax
Tgx Tpa 1 . - Ty
Nx ¥NA 7'N B . . I

The formula for Pearson’s coefficient of multiple correlation has already

. A
been given, Rypco) = \/ -3

XX

where Ay, is the minor made by

deleting row X, column X.

Evidently in this class of cases the coefficient of determination degen-
erates into a function of the coefficient of multiple correlation. For the
degree of determination by residual factors we have

b fXABC_ 8
X0 ¢(ABC...) _Axx— Y'x(ABCe++)

in agreement with Pearson’s results,
For the degree of determination by a known factor we have

¢’(XBC 0) d’(XBC )"d}\ od’(BC ) AAAA\(‘( L\AAAXX
(ABC 0) ¢(ABC...) Ay

dya=
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T'he last formula brings out the close relation between the path coefli-
cients and multiple regression. As already noted, the most probable
deviation of X for known deviations of A, B, C, etc., is given by the
formula

X' AGA’ | AB Al B
—oxall ) Sxn? =[’x~A0. + {?x-uo_ :
— A B

Ox Axxoa Axxoy

As already stated, Pearson’s coeflicients of multiple correlation and
regression were not devised especially for the analysis of causal relations.
The formula for multiple regression, for example, gives the most proba-
ble value of one of the variates for given values of the others regardless
of causal relations. In cases in which all the correlations are known
in a system including an effect and a number of causes the method can
be used to find the path coeflicients and the degrees of determination
of the effect by each cause in the sense used in this paper. Such cases
in which the direct methods can be used are, however, relatively
uncommon. Where the system of paths of influence is at all com-
plex, involving perhaps hypothetical factors, the causal relations can
be analyzed only by the indirect method of expressing the known cor-
relations in terms of the unknown path coefficients, making the sums of
the degrees of determination unity and solving the simultaneous equations.

PART II. APPLICATION TO THE TRANSPIRATION OF PLANTS

A large body of experimental data on the factors which affect the rate
of transpiration in plants has been published by Briggs and Shantz (2).
These data are well adapted for use in illustrating the methods of analyz-
ing causal relations presented in part I of this paper.

The experiments which are used in this paper were conducted at
Akron, Colo.,in 1914. A variety of crop plants were grown in sealed pots.
The total transpiration was measured each day. Among the environ-
mental factors studied were the total solar radiation during the day, the
wind velocity, the air temperature (in the shade), the rate of evaporation
from a shallow tank, and the wet-bulb depression (sheltered from sun but
not wind). The correlations between the daily transpiration of each kind
of plant and the integrated values of the environmental factors were pub-
lished by Briggs and Shantz. In order to avoid the effect of seasonal
change in the plants, the logarithms of the ratios of the transpiration on
succeeding days were correlated with similar figures for the various factors.
The correlations between the various environmental factors for the 100
days from June 18 to September 25, 1914, have been calculated by the
writer from the data presented by Briggs and Shantz. ‘This period covers
all the crop periods but is longer than most of them. None of the corre-
lations appeared to depart much from linearity.
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The daily averages, the standard deviations, and the correlations are
given in Table I.

TaBLE 1.—Daily averages, standard deviations, and correlations from experiments on
transpiration in crop plants made by Briggs and Shantz at Akron, Colo., 191.4

CORRELATIONS
. PP e N Wet-bulb Fvapor-

Wind. Radiation, Temperature. depressio. ation.
Wind. ... —o.o1 d0.07 |—0.02 F:0.07 | 0.28 :to.ofi | 0.38 4:0.06
Radiation..................... —0.01 £0.07 | iuuiiiiiiiiinn .47 * .05 .48 + .o3 08 4 o4
Temperature......... Jf— .02 £ .07 47 £ 05 | .59 4 .03 .56 + .o5
Wet-bulb depression. . .. .28 + .06 .48 £ .05 259 F L0585 e, .83 £ .o2
Evaporation.......... .38 £ .06 .08 £ .o4 56 + .03 83 & .02 |............
Small grains@. 22 + .04 V65 + .03 71 + .02 88 + .or 87 + .o2
Ve.iiiui.. 19 * .10 .65 £ .06 73 * .05 94 * .ot 91 + .02
Sorghum, mill 218+ . o041 . 570+ .030 6534 .026 788+ . o018 7134 . o021
Sudan grass (int inclosure) . .52 + .07 .55 + .00 .84 & .03 .83 + .03 .93 * .or1
Sudan grass (in open)...... .32 + .08 .52 + .o7 <81 + .o3 .85 + .03 .82 4 03
Dentcorn................. .28 + .08 €. 52 + .00 71 £ .04 81 £ .03 .79 + .03
Algeriancorn.............. .33 * .09 .62 £ .00 .79 % .o4 .88 4 o2 .85 4 .03
Cowpea, lupine ¢. . . 335+ .057 570k .o042 «675% .035 | .78s4 .o25 | .575d4 .02
Alfalfad ... ... .. .. .290% .035 .430% .030 .495+ .029 | .%00%. o19 | .j05% .olg
Amaranthus............... .04 * .10 .40 * .09 .45 + .08 .60 * .07 .56 £ .06

Mecan 4

Evaporation (shallow tank) (kilograms per square meter). ........... 9.70  2.76

Integrated radiation (calories per square centimeter)............... 753 134
Air temperature, integrated mean (degrees Centigrade) ............. 20. 10 3.48

Integrated wet-bulb depression (hour degrees, Centigrade)........... 143 58
Wind velocity (miles perhour) ............. ..o i 5. 54 2. 24

a Averages of six similar correlations involving Kulganka and Galgalos wheat, Swedish Select and Burt
oats, Hannchen barley, and spring rye. The last, having on the whole the largest correlations, is also given

separately.

b Averages of four correlations, Minnesota Amber and Dakota Amber sorghum and Kursh and Siberian
Millet. These correlations were all very similar.

¢ Average of the sitnilar correlations for cowpeas and lupine.

d Average of four tests with alfalfa.

ePublished as + 0.80, which seems too large. Recalculation gives + o.52.

It will be interesting first to com-
% pare the direct and indirect methods
T\b of calculating path coeflicients and

coeflicients of determination. Let us
consider the relations of wet-bulb

5 depression (B) to temperature (7)),
wind velocity (W), and radiation (1).
Since the direct methods are only

applicable in systemns in which each

variable is connected with every

0 other variable, the diagram of rela-

’ tions is as shown in figure 14.

F16. 14.~Relations between wet-bulb depression Outstanding factors, indcpendent of

(B), wind velocity (IV), radiation (R), and tem- ) g
perature (7°) as assumed for direct analysis, V, R,and T are represcnted by O.
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INDIRECT METHOD

Six equations can be formed, expressing the six known correlations in
terms of the unknown path coefficients. A seventh equation represents
the complete determination of B by W, R, T, and O.

(1) ryw=  0.28=w+t(c+ bs)+ub.:

(2) ror= 48=wb+ts+u.

(3) rpr= .59=w(c+ bs) + 4 us.
(4) rye=— .o1=0b.

(5) rwr=— .02=c-Ds.

6) rrr= 47=s.

(7) *+w+ 2+ u*+ 2wi(c+ bs) + 2w0ub+ 2uts = 1.

The values of b and s are given directly from cquations (4) and (6),
and the value of ¢ (= —o0.0153) can then be obtained from (5). The
solution of (1), (2), and (3) gives w=0.2921, =0.4735, and 1 =0.2604.
Finally, from (7) we obtain 0*=0.5138 as the degree of determination by
outst anding factors.

dy.o=0" = 0.5138
dyy =" = .0853 Pr-w=wW=0.2921
dpr=1 = 2242 Pur=t = .4735
dpyop=14" = .0678 Por=1u= .2604
dysm=2wi(c+bs)= — .0055
dywi = 2wub = — .0015
e =12uls = 1159

1.0000

DIRECT METHODS
According to the formulae given in part I we have—
¢(BWRT)

o= “GWRT)
_®BRT)—d,.6(RT)

dow === (WRT)

4. SBWT)—dy. s (WT)
bR S(WRT)

i _$BRW) —dy. o (RW)
b $(WRT)

where

S(BWRT) = 1— 15+ 2ryyhyntun— 2V pw!wal rrr e+ gyt
- 721;17. + 273w witts — 27wV wrtTRY. e T 7 urttwr
— e+ 2v srYRTYTB — 2V 3R pw? Wit + 7‘21;'1'72“”1
— Tzwn + 27 wr¥r1?’TW
—’wr
—7py

S(WRT)=1—1"yz— r*wr— Prr+ 2rwarnrtew

¢(BWR), etc., are analogous to ¢(WRT)

$(RT)=1—1%¢ ¢(WT), etc., are analogous to ¢(RT).
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By substitution of the correlations in these formulac the following
results arc obtained:

¢(BW RT)=o0.4002
¢(BWR) = .6884 ¢(BW)=0.9216 ¢(WR)=0.9999
¢(BWT) = .56065 ¢(BR) = .7696 SWT)= .9996
¢(BRT) .4668 ¢(BT) = .6519 o(RT) = .7791
¢(WRT) 7788

These give values of the coeflicients of determination identical with
those given by the indirect method.

This method, as was shown in part I, is essentially the same as Pear-
son’s method of calculating multiple regression.

I

I

Let A= |1 Ten Ter Tew | = |1 048 0.59 0.28]|=0.4002
Trp I RT YRW 48 1 47 —.01
8t I Ytw .59 47 1 —.02
twp twr ftwr I 28 —.o01 —.02 1
i
Let Ayy=A with column B, row B, deleted.

Apy=0.7788, App =0.2028, Apr=0.3087, Ay =0.2275
_uw _ _A
p“'W_E; =0.2921 dB.o—ABB—o.5139

A
Pen= Z_BB =0.2604
BB

ABT
Pyr=7"=0.4735.
BB

These values are identical with those obtained by the preceding
methods.

I't will be seen that the first method, while apparently less direct than the
others, is really less laborious. T'he solution of three simultancous cqua-
tions requires merely the evaluation of a determinant of the third order
instead of one of the fourth order, as in the last method. The expression
¢(BWRT) in the second method is, of course, merely an expansion of
the same determinant of the fourth order as that used in the last. The
indirect method, moreover, gives more insight into the processes followed
than the others in which there is a substitution in what appear to be
arbitrary formulae. In line with this last point, the indirect method is
more {lexible in that it can be used to test out the consequences of any
assumed relation among the factors.

ANALYSIS OF CAUSAL RELATIONS

In attempting to interpret the present results in terms of causation,
we see at once that the scheme of relations chosen is not a very satis-
factory one. The wet-bulb depression was measured under shelter. Con-
sequently the coefficient of determination, d, ;= 0.0678, can not measure
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the degree of direct determination by radiation, but determination by
some factor other than wind or temperature with which radiation is
correlated.

One should not attempt to apply in general a causal interpretation to
solutions by the direct methods. In these cases, determination can usu-
ally be used only in the sense in which it can be said that knowledge of
the effect determines the probable value of the cause. This is the sense
in which Pearson’s formula for multiple regression must be interpreted.
I W’, T', and R’ are given deviations of wind, temperature, and radiation
from their mean values, the most probable value of the wet-bulb depres-
sion, B’, is given by the following formula:

’ ’ 2>/
6_ = YIL Powt %f’n'n +

oy Oy

7

This formula can only be used for conditions which are similar to those
for which the values of the path coeflicients were calculated. If path
coefficients were calculated in a sys-
tem which fmly represented the
causal relations, the formula would
give the value of the wet-bulb de-
pression under any set of conditions
in so far as it is determined by the
factors considered.

The causal factors which actually
determine wet-bulb depression are _
temperature, absolute humidity (H), "5 G hn S Yoos L
and wind velocity (fig. 15). Radia- relationsbetter than figure 14 but adapted only
tion can beintroduced into the scheme ‘0 ndirect analysis.
as a factor correlated with these causal factors. Wind velocity is cor-
related to such a very slight extent with temperature and radiation that
its correlation with absolute humidity can probably be neglected without
serious error. The relations between radiation, temperature, and abso-
Iute humidity are undoubtedly very complex. Radiation has a direct
positive influence on temperature. Both radiation and temperature have
positive effects on absolute humidity by increasing evaporation. Cor-
relation between absolute humidity and temperature would be expected,
because with reduced temperature the saturation point is reached at a
lower absolute humidity and the excess moisture is precipitated. In-
crease in humidity, on the other hand, tends to reduce the radiation
which reaches the earth, and directly or indirectly this has a negative
influence on all three of the correlations.

There are not enough data to estimate the importance of all of these
paths of influence. Tiven if we represent the complex of paths connecting
H, R, and T merely by three correlations, the diagram has eight paths to
solve. 'The six correlations between B, W, R, and T and the statement
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in regard to complete determination of B by W, I{, and T furnish only
seven equations.

Fortunately, data are given in another paper by Briggs and Shantz (3)
from which an eighth equatien can be derived. 1In this paper the average
value of each of the measured factors is given for each hour of the day.
The cycle of changes in wet-bulb depression follows very closely the
changes in temperature. In fact, there should be very little, if any,
regular hourly cycle of changes in absolute humidity, so that the wet-
bulb depression should be wholly determined by the temperature changes
except for some influence of wind velocity.

Let pp.r=1be the path coefficient whicli measures the relative influence
of temperature on wet-bulb depression in the variations from day to
day. Let ppu="h, pp.w=1w, and let ov, oy, ow, and o be the standard
deviations of the daily differences in the various factors and in wet-bulb
depression. Let T'—7T"’, etc., be the actual differences in temperature,
etc., at certain times. The dilference to be expected in wet-bulb
depression, B’— B, is as follows:

'R S 11 gyt
B'—B"_1'—T", W WV’  H-—I

Oy ar Oy T

h.

While ¢, w, and h are assunied to measure the relative influence of tem-
perature, wind, and humidity in the variations {rom day to day, the
foregoing formula should apply under any conditions, if ¢, w, and I were
calculated from a system which represented truly causal relations.

. . gy, . . . .
The expression S shown in part I to give the change in wet-bulb
T

depression (B) directly caused by a unit change in temperature. The
relative importance of the various factors in determining the variations
from hour to hour is very different from that from day to day, but the
change in wet-bulb depression caused by unit changes in temperature,
wind velocity, or absolute humidity should always be the same so long
as the relations are substantially linear.

The greatest difference, in temperature within an average day in the
data was between 5 a. m. and 3 p. m. This is given as 32.7° I\, or
18.167° C. The difference in wet-bulb depression between these hours
was 21.8° I, or 12.111° C. The difference in average wind velocity was
2.5 miles per hour. The standard deviations of the daily variations have
already been given. or=3.48 day degrees C., o,=58 hour degrees C.
integrated for 24 hours. 'This means 2.4167 degrees C. oy =2.24 miiles
per hour. We will assunie that thiere is no difference in absolute humidity
(H'—H'' =0). Substituting those values in the formula for wet-bulb

depression, we get
12,111 18.167, | 2.50

2.4167  3.48 * ' 2.24

5.0114=5.2204¢+ 1.1101W.
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We now have eight equations from which to find eight unknown path
coelficients.

(1) rpw= 0.28=w-+ .

(2) 15 = .48=ts+bw+ah.
3) rsr = .539=t+dh+wc.
(4) ryp=—-01=0b.

(5) #wr =—.02=c.

(6) e = 47=5.

(7) W44+ 2wtc+ 2htd=1.
(8) 5.0114=75.2204i+1.1101W.

Iiquations (4), (5), and (6) give b, ¢, and s directly. Solution of (1) and
(8) gives t=0.8963, w=0.2979.

From (2) ah= o0.0617
From (7) Ik?=  .6570, h=—0.8105, a=—0.0761
From (3) dh=—.3003, d=  .37006

ryu=nh+1td=—0.4784.

The coeflicients of determination, the path coeflicients, and the corre-
lations are thus as follows:

dyr = 0.8034 Puer = 0.8903 s = 0.5900

dyy = .6570 Py =—.8105 Tpn = —.4784
dpyy = .0888 Psew= .2979 rpw= .2800
dp.z =—.5384
‘dy.57=—.0107 ¥gp = —.0761
1.0001 fur=.3700
TRT = .4700.

It turns out that the differences between different days in wet-bulh
depressions are due to a somewhat greater extent to differences in temi-
perature (0.80) than to absolute humidity (0.66). The variation in wet-
bulb depression would be much greater were it not that these factors
vary together but act on wet-bulb depression in opposite directions and
so tend to balance each other (dyzz=—0.54). Temperature shows a
rather strong positive correlation with absolute humidity (0.37) as well
as with radiation (o.47), but the various paths of influence between
radiation and absolute humidity almost balance each other (v =—0.08).

These results can now be used in finding the relative importance of
the various factors which determine evaporation or transpiration. In
figure 16, X may represent either evaporation or the transpiration of
any plant. Radiation must be considered as a direct causal factor in
these cases.
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The following four equations can be made with which to solve the
path coefficients from W, H, R, and T to X:

ryw=10" +t'c +u'b

ryr =w'c A+t +u's +h'd
reg =w'b  +t's +u'  +ha
Pxn =0 Py +Urye 00 15 + 11y,

Substituting the values already found for a, b, ¢, d, w, h, t, and ry,,
we have

rxw = + 1.00w0'—0.021"—o0.01%’

ryr=— .02w 4 1.00t' 4 471"+ 0.37060’
ryp=— .O1W' + .47t +1.000"— 07611’
ryp=+ 28w+ .50t'+ .48u’— 4784,

T'he solution is as follows:

W' = Py = -+ 0.997 175y + 0.01437y1— 0.00227¢p + 0.01 1 47y,
V'=pgar =— .2207rxw+ .89437xr— .8175rn+ .8228r,
w'=pgp =+ .1488rxw— .30337xx+1.4155/xp— .50077x,
W =pyu=—+ .4007rxw+ 7408751+ 41077z 1.5772Vxy-

It is merely necessary to substitute the values of the correlations of
evaporation or transpiration with wind velocity, temperature, radia-
tion, and wet-bulb depression, as
given in Table I, to find the four
path coellicients in each case. I'he
results are givenin’l'able11.  These
have all been checked by substitu-
tion in the fourth equation (ry,= -+
0.28w0" +0.591" -+ 0.481"—0.47841").
‘I'hecorrelationbetween evaporation
and the transpiration of any plant
can be deduced from the formula
Pxg = Wy + Urge 4+ /gy + B iy
"The correlations of evaporation with
wind velocity, temperature, and
FlG.‘ x6l.-Rel_ali0ns between ovaporat‘ions ortrans-  racliation have been gi\'ell inTable 1

piration (X)) and the system shown in figure 15.

as 0.38, 0.50, and 0.68, and that
with humidity can be calculated by the formula sy = pr. - a g
d pgr= —0.2651. Thus rgz= 0.38w" +0.561' + 0.68u’ — 0.26511'. ‘L'le
calculated results in column 6 of T'able II are compared with actual
correlations between evaporation and transpiration in columu 7. ‘The
correlation of evaporation with itselfl comes out 0.839 by this for-
mula. There should, however, be an additional term (py.oipo) in the
formula to allow for correlation through other factors (O) thau IV, T,
R, and H. From Table III we find that evaporation is determined
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to a considerable extent (dg.,=0.161) by outstanding factors. The addi-
tional term in this case would have this value and when added to 0.839
gives 1, as it should. With one exception, the calculated correlation
between transpiration and evaporation is a little smaller than the actual
correlation. This means either that there is some additional factor
which should be allowed for or else that the path coeflicients with W, T,
R, and H are not given quite their due weight, owing perhaps to lack of
complete linearity in the correlations.

TABLE I1.—Table of calculated path cocfficients

Wind. |Tempera-| Radia- | Absolute [ Correlation with
- ture. tion. lumidity. cevaporation.
‘l::ll(("(ll‘.. Actual.
px.w px.T px.r px.n
rxm TXFE
Wet-bulb depression. . ................... 0. 298 0. 896 o —o.811 o. 830 o. 83
Evaporation (shallow tank).............. . 395 . 544 - 395 — .437 (- 839) 1. 00
Transpiration:
Smallgrains................c.veeun.. . 238 .77 . 249 — .48 . 826 .87
Rye. .. . 209 . 853 . 207 — .583 . 852 .91
Sorghum and millet.................. . 234 . 718 . 203 — .21 . 741 .73
Sudan grass (inclosure). . . 539 . 870 . 130 — . 216 L 838 .93
Sudan grass (open).. .. .339 .928 . 050 — . 375 . 788 .82
Dent com. .. . 297 . 815 . 109 — . 405 . 751 .59
Algeriau corn. . ... . 349 . 851 . 194 — . 301 . 844 . 8s
Cowpea and lupine . 351 . 710 . 214 — . 346 . 768 T
. 303 . 603 L1175 — . 424 . 645 . 705
Amaranthus. ............ ... ... . 052 . 560 . 105 — . 428 . 518 . 560
Average transpiration.................... . 279 . 733 . 181 — . 420 . 751 . 781

TaBLE I11.—Cocfficients of determination

Abso-
Tem-| Radi lute
Wind.| pera- tf ™ hu- Juint determination. Residual.
ture, [2HOM} mid-
ity.
dx.w | dx.1 | dx.r |dx.un | dx.wr | dx.wr |dx.r| dx.on | dx.en dx.o
Wet-bulb depression. ...... 0. 089 [o. 803 o |o. 657 |—o. 011 o o |—o.538 o o
Evaporation............... . 1560 | . 290 0.156 | . 191 [— .009 |— .003 0.202 |— .176 i+o0.020 0. 161
Transpiration:
Small grain............ .057 | +607 [ 062 | .240 [— .007 |— .o00r1 | .182 |— .283 - .o19 L1285
Rye.....coovveiiiiin.. 044 | - 728 | .043 | . 340 |[— .007 |— .o001 | . 160 |— .309 {4 .018 . 038
Sorghum and millet.. .| .o55 [ .516 | .0o41 | .177 |— .007 |— o001 | .137 |— .224 |+ .o013 . 203
Sudan (inclosure). ..... 2290 | +757 | +o17 | 047 |— .019 |— .001 | .106 |— .140 |+ .004 | (— .002)
Sudan (open). ......... 2115 | . 801 | .003 | . 141 |— .013 |— .000 | . 051 |— .258 |- . 003 . 090
Dent com..... 088! .664 | .012|.104|— .o10|— .o0or1 | .084 |— .244 |4 .o007 . 237
Algerian corn .122 | 724 | -038 | .153 {— .o12 |— .o01 | . 155 |— .247 |-+ .o12 . 057
Cowpea and lupine..... .123 | . 504 | 046 | . 120 [— .010 |— .002 | .143 |— .182 |+ .o11 . 247
Alfalfa................. .092 | 304 | .o14 | .18 |— .007 |— .001 | .007 |— .190 |+ . o008 . 474
Amaranthus........... .003 | -314 | co1x | .183 |— .o001 |[— .000 | .055 [— .178 |4- . o007 . boy
Average transpiration...... 078 1.537|.033 [ .176 [— .008 |[— .o001 | .124 |— . 228 |-+ .012 . 277

The coeflicients of determination are given in ‘['able 11I. T'he differ-
ence between their sum and unity is given in the last column as dg.,,
the determination by outstanding factors. As suggested above, the
assumption that all the fundamental correlations are linear may involve

\



584 ‘ Journal of Agricultural Research Vol. XX, No. 1

some error which would tend to underweight the coefficients of deter-
mination between transpiration and the known factors and so over-
weight the apparent degree of determination by outstanding [actors. In
certain cases, however, the residue is so small, in one case actually com-
ing out negative, that it is probable that this is not an important source
of error. The residual determination is greatest for/ the crops which
were cut twice during the season—namely alfalfa and amaranthus.
There were considerable periods following cach cutting during which the
absolute value of the transpiration was small.

Wind velocity has about the same relative value as a factor in deter-
mining transpiration as it has in determining wet-bulb depression. Its
relative importance is a little greater for determining evaporation from
the shallow tank. )

Temperature is somewhat more important than absolute lumidity in
determining the variations in wet-bulb depression and rate of evapora-
tion from day to day. It is very much the most important factor in
determining.the rate of transpiration in all the plants.

Radiation is an important factor in evaporation, coming out equal to
wind velocity and only slightly less important than absolute humidity.
In the plants, on the other hand, it is almost a negligible factor.

Comparing transpiration in the average plant with evaporation in the
sun from a shallow tank, we find that the former is influenced relatively
much more by temperature, to about the same degree by absolute
humidity, somewhat less by wind velocity, and very much less by radia-
tion. The four factors are much more nearly equal in importance in the
case of evaporation (dg.r=0.30, dg.y=0.19, dyw=0.16, dg.;=0.16) than
in the case of transpiration (dx.r=0.55, dx.;;=0.18, dyx..wv=0.09,d ., = 0.04).
In comparing the importance of these factors it should be added that
radiation has an importance somewhat in excess of its direct influence,
in that its variations are correlated with those of temperature. Humidity
has reduced importance, since, though correlated with temperature, it
affects evaporation and transpiration in the opposite direction.

OTHER APPLICATIONS

The method of analysis presented here can readily be applied to the
problem of the relative importance of heredity and environment. An
application of this kind to the case of the piebald pattern of guinea pigs
has already been published (9), and one to the resistance of the same
animal to tuberculosis is in press.! The method can be applied also to
such a problem as the determination of the effects of various systems
of mating, such as inbreeding, line breeding, and assortative mating on
the genetic composition of an originally random-bred stock.?

! WriGHT, Sewall, and LEwIs, Paul A. FACTORS IN THE RESISTANCE OF GUINEA PIGS TO TUBERCULOSIS
WITH SPECIAL REGARD TO INBREEDING AND HEREDITY. [n Amer. Nat., v. s5. 1921. In press.
2 WRIGHT, Sewall. SYSTEMS OF MATING, 1 TO V. In Genetics, v. 6. 1921. In press.
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